
GigaScience
 

Reproducible genomics analysis pipelines with GNU Guix
--Manuscript Draft--

 
Manuscript Number: GIGA-D-18-00155R1

Full Title: Reproducible genomics analysis pipelines with GNU Guix

Article Type: Technical Note

Funding Information: German Federal Ministry of Education and
Research (BMBF)
(031 A538C RBC)

Dr Bora Uyar

Berlin Institute for Health Mrs Katarzyna Wreczycka

H2020 Research Infrastructures
(654248)

Dr Brendan Osberg

Abstract: In bioinformatics, as well as other computationally-intensive research fields, there is a
need for workflows that can reliably produce consistent output, from known sources,
independent of the software environment or configuration settings of the machine on
which they are executed. Indeed, this is essential for controlled comparison between
different observations or for the wider dissemination of workflows. Providing this type of
reproducibility and traceability, however, is often complicated by the need to
accommodate the myriad dependencies included in a larger body of software, each of
which generally come in various versions. Moreover, in many fields (bioinformatics
being a prime example), these versions are subject to continual change due to rapidly
evolving technologies, further complicating problems related to reproducibility. Here,
we propose a principled approach for building analysis pipelines and managing their
dependencies. As a case study to demonstrate the utility of our approach, we present
a set of highly reproducible pipelines for the analysis of RNA-seq, ChIP-seq, Bisulfite-
seq, and single-cell RNA-seq. All pipelines process raw experimental data, and
generate reports containing publication-ready plots and figures, with interactive report
elements and standard observables. Users may install these highly reproducible
packages and apply them to their own datasets without any special computational
expertise beyond the use of the command line. We hope such a toolkit will provide
immediate benefit to laboratory workers wishing to process their own data sets or
bioinformaticians seeking to automate all, or parts of, their analyses. In the long term,
we hope our approach to reproducibility will serve as a blueprint for reproducible
workflows in other areas. Our pipelines, along with their corresponding documentation
and sample reports, are available at http://bioinformatics.mdc-berlin.de/pigx
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Altuna Akalin

Order of Authors Secondary Information:

Response to Reviewers: Reviewer #1: The authors introduce a method that enables reproducible genomic
analyses based on GNU Guix, an open source package manager based on a
functional/transactional paradigm.

The main strength of this method is the ability to capture the full graph of a data
analysis dependencies both for the build and execution environments.

The manuscript is well written and easy to read, however there are some points that
need to be clarified or reviewed:

* When discussing the usage of containers for data analysis reproducibility, the authors
say: "Containers and binary disk images alone do not make traditional tooling any
more suitable for the purpose of reproducible science". This statement does not
provide an objective representation of the state of container technology. While
containers are not a perfect solution, they have quickly become a reference solution to
the problem of reproducibility. Several authors have shown how this technology can be
used to successfully address the problem of reproducibility of complex data analysis
workflows, see (1), (2), (3). Containers can provide the same level of bit-by-bit
reproducibility as claimed by the method proposed by the authors (if not higher). The
problem of transparency can be easily solved following best practices or using
community collections such as BioContainers.

Response:
We thank the reviewer for their feedback and agree that greater clarity is needed
regarding the benefits of our approach over containers. For many end-users, the
appeal of ‘reproducibility’ is clear enough, and indeed, containers offer bit-for-bit
identical execution binaries with ‘reproducibility’ in the same sense as ours.
Traceability (e.g. from source to application bundle), is somewhat more subtle,
however, and it is here that containers fail to offer any indication as to the origin of the
bits that make up an application bundle.
Functional package management, on the other hand, offers referential transparency,
whereby the full set of dependencies (and versions thereof) in a workspace are
explicitly declared. Guix users need not rely on trust in developers’ adherence to best
practices to be confident of exactly which versions and sources are employed in a
bundle, and to be certain that it is precisely these sources that have been used to
generate their package. With Guix, there can be no undeclared dependencies, and
malicious code cannot be hidden within an opaque binary bundle, but rather, must
remain traceable to a specific source. Ref (A) shows the prevalence of potential
security vulnerabilities in docker images, and the inheritance of such dependencies.
This is of particular importance for data security in applications that have access to
sensitive medical data, such as in bioinformatics. Indeed, as the authors of (1) state,
Guix “represents the most rigorous approach towards dependency management”.
Secondly, the authors of (2) suggest that the concept of continuous integration be
applied to rerun experiments automatically whenever updates to the source code or
data are applied. Since container description languages limit declaration of
dependencies to other containers, however, undeclared dependencies would be
ineffective as ‘triggers’, and it is not always clear when the re-execution of such
experiments would be necessary.
Theoretically, container developers adhering to best-practices could maintain their
containers’ dependency lists; however, in practice, in large projects with many
contributors, omission from human error becomes increasingly difficult to rule out. Guix
ensures that dependencies are hard-coded into a package’s construction, rather than
relying on trust in 3rd parties.
We have added text to the manuscript to highlight this distinction between simple
‘reproducibility’, and referentially transparent reproducibility offered by Guix, along with
the significance thereof.

* "Other package and environment managers .. fail to take the complete dependency
graph into account, etc". This is a central point, the authors should provide a better
description how the proposed method differs when compared to the other tools
mentioned or provide a citation to sustain their claim.
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Response:
As described in the above comments, Guix offers referential transparency, whereas
containers depend on best-practices and judgement of the developer. Describing the
detailed functional package management methodology behind Guix is beyond the
scope of our work, but we agree that a citation is in order, and have added references
to the works of Dolstra (2004) and Courtès (2015). The sentence in question has also
been rephrased
* The authors put a lot of emphasis on the "bit-by-bit" reproducibility of the method
proposed, however they conclude that it's not always possible due to non-deterministic
build procedures, timestamp in the source files, tools relying on external components
downloaded from the internet, etc. Maybe a better definition would be "near bit-by-bit
reproducibility". At this regard it should be noted that containers allow real bit-by-bit
reproducibility in the extend the resulting images are distributed in a binary format ie.
do not require to re-compilation of the graph of the dependencies.

Response:
We agree greater clarity is needed on the differences in ‘reproducibility’ offered by
containers and functional package management.
Containers and functional package management are complementary approaches. The
former is a means of deploying existing binaries, the latter serves to generate those
binaries. For example, containers built from Dockerfiles will differ substantially when
built on different systems or at different times, as their files are commonly produced by
non-deterministic processes, such as downloads from third-party package repositories
or non-deterministic build processes.
Guix shows that we can build complex applications --- and thus even container images
--- in a bit-reproducible fashion without having to sacrifice referential transparency or
binary provenance (i.e. knowledge of the origin of said binary). From that point,
containers produced by Guix can be copied, distributed and used without any re-
compilation, and offers all the same functionality as container images generated via
other means.
We have clarified the differences and the caveats that apply to reproducibility in the
functional package management model in the manuscript.

* When discussing the reproducibility of the proposed method, it should be taken into
account possible limiting factors. For example: the guix package is not usually
available in common Linux distributions and its installation requires root permission.
Also it's only available for the Linux operating system, therefore the applications
depending on it cannot be deployed on different platforms. While this may not be a big
problem for production scenarios, it can limit the application usage on computer
platform commonly used for development and testing purpose. Finally, how accessible
is a guix package definitions file, based on a functional notation, to an average user
without knowledge of functional programming concepts and syntax?

Response:
It is true that, for the moment at least, Guix is only available on GNU+Linux systems.
This has been now noted in the manuscript.
No knowledge of programming is required for the user to execute the pipelines
described in the manuscript; it is sufficient that users merely enter a few commands in
a terminal for installation and execution (as described in the online documentation).
Even so, they reap the benefit of reproducibility that is provided by functional package
management.
The definition of custom Guix packages requires moderate programming expertise.
Guix implements a domain specific language (DSL) that is embedded in the general
purpose programming language Guile Scheme.  Guix can also automatically convert
package specifications written in JSON to its package DSL, and offers recursive
importers, which generate package specifications automatically from a variety of third-
party repositories such as CRAN, Bioconductor, CPAN, Pypi, Hackage, etc.
We would like to emphasize that the reproducibility of our method does not depend on
users installing Guix or writing package definitions themselves.  They can benefit from
bit-reproducibility in other target formats, such as self-executing tarballs, SquashFS
images for use with Singularity, or Docker images, although we suggest using Guix as
a language with which to describe and understand software environments.
We have added a short note regarding the level of proficiency expected of the user,
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and the limitations of Guix-dependent workflows in the discussion.

* In the results is shown the usage of "pigx", however is not discussed what is this tool
and why is needed.

Response:
Indeed, the original manuscript left this unclear, and we thank the reviewer for pointing
out this oversight. The set of pipelines that we describe are collectively called “PiGx”,
as an acronym for Pipelines in Genomics (where the ‘x’ is intended to aid the specificity
of search results)  We have clarified this in the manuscript.

* When discussing the reproducibility of the proposed method the authors provide
metrics to assess the reproducibility of the graph of dependencies for the same
pipeline deployed across three different systems. This is an interesting analysis,
however it should also be provided a more detailed discussion and quantification of the
*outputs* of the pipeline executions in different systems. It is mentioned that the
repeatability was impacted by the non-determinism of some of the component used in
the pipelines. Have they tried to compare the results of a pipeline not containing any
source of non-determinism?

Response:
For a pipeline without any non-deterministic elements (in our case, the bs-seq pigx
pipeline) the analysis is indeed repeatable, when a common time-stamp is supplied via
the SOURCE_DATE_EPOCH environment variable, yielding bit-for-bit identical HTML
reports on different machines. We have included a brief comment specifically
addressing reproducibility of the reports.

* The authors should provide a detailed description how to replicate the execution of
the data analysis pipelines described in the manuscript along with the used dataset.

Response:
Detailed description on the execution of the pipelines is provided in the online
documentation, available here: http://bioinformatics.mdc-berlin.de/pigx_docs/.
Regarding the specific use-cases from the manuscript, we have now also supplied
additional information (e.g. download sites, experimental accession IDs. etc.) in the
supplementary materials.

1. Möller S., et al., Robust Cross-Platform Workflows: How Technical and Scientific
Communities Collaborate to Develop, Test and Share Best Practices for Data Analysis,
https://link.springer.com/article/10.1007%2Fs41019-017-0050-4
2. Brett K Beaulieu-Jones & Casey S Greene, Reproducibility of computational
workflows is automated using continuous analysis, 10.1038/nbt.3780
3. Di Tommaso P., Nextflow enables reproducible computational workflows,
10.1038/nbt.3820

Additional citation supplied to manuscript:
Rui Shu, Xiaohui Gu, and William Enck. 2017. A Study of Security Vulnerabilities on
Docker Hub. In Proceedings of the Seventh ACM on Conference on Data and
Application Security and Privacy (CODASPY '17). ACM, New York, NY, USA, 269-280.
DOI: https://doi.org/10.1145/3029806.3029832

Reviewer #2: The authors describe a complete set of pipelines for RNA-seq, ChIP-seq,
bisulfite sequencing and single cell RNA-seq. The focus of the pipelines is on ease of
use and reproducibility, and they build on several existing tools: GNU guix for package
installation, Snakemake for workflow execution and GNU autoconf to prepare and
document the workflow system.

They then use these tools to walk through the implementations and show example
analyses for the different pipelines. This is a great set of documentation and useful
resource for the community.

Finally the authors describe an effort to characterize the reproducibility of the pipeline
install to the level of hash-identical tools. This demonstrates that the hash-level issues
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are due to timestamps and other non-deterministic parts of binary builds affecting a
small fraction of the tools.

This is a great initiative and demonstrates how to build reproducible pipelines making
use of existing tooling. I have a couple of suggestions to help improve the paper:

- The major new initiative here is the use of Guix for binary compatibility. How do you
feel this improves reproducibility over conda packages with pinned versions? You
provide `requirements.txt` files in the GitHub repositories which look to represent this
approach. How did you find they compare?

Response:
We thank the reviewer, Brad Chapman,  for his time and feedback. Software version
strings are prescriptive in the sense that they indicate only the intent of upstream
developers to distinguish the source code of one version from any other version that
they have authored previously. Version strings have limited descriptive power, as they
fail to provide anything beyond a short name for a set of source files, and their
descriptions are susceptible to human oversight. The configuration space (e.g. flags
passed to the configure script or Makefiles), the state of the build-time environment
(e.g. the compiler variant used to generate the binary), and dynamic linkage
information (what exact library variants were linked with the binaries) are out of scope.
This is appropriate, since version strings aren’t intended to fully capture this state, but
then version strings alone are insufficient to describe an application.
In the case of Conda, the current state of the Conda repositories remains undeclared,
which precludes referential transparency (see discussion above) --although this could
theoretically be approximated by maintaining a snapshot of the collection of Conda
recipes and a well-defined, immutable build environment for all binaries. In practice,
however, these recipes often refer to network resources; completely capturing the state
of all such resources is infeasible.
With Guix the complete state for all packages is encoded in the state of the Guix
source repository. There are no dependencies on the state of the system performing a
package build.  The build environment itself is reproducible without depending on
opaque binary state.

- It would be worth mentioning alternative full stack alternatives to the workflow
approach you're taking. The most community driven one is Common Workflow
Language plus a variety of runners. Right now this reads a bit as if you need
Snakemake for the implementation, while in reality your approach with guix should
work across multiple runners. What would it take in your opinion to utilize different
workflow systems?

Response:
Indeed, Snakemake is not the only possible workflow framework that could be chosen
for this particular set of pipelines; the choice of workflow framework is arbitrary.
Snakemake was chosen primarily because it is already well-enough established, and
compatible with a well-known programming language (i.e. Python). Thus, we felt the
choice would be conducive to ease of use and adoption. We have added text to the
manuscript to clarify the reasoning for this choice.

- Could you mention thoughts on maintainability of these pipelines over time? One of
the hardest parts of building these types of integrated systems is continuing to develop
and improve, which is where community engagement of existing solutions (bioconda,
CWL) helps provide many hands to keep moving things forward. Do you feel that guix
provides an advantage in terms of maintenance? How do you plan to support bugs and
issues in previous versions as users go back to run older pipelines?

Response:
The collection of bioinformatics software in Guix has seen continued maintenance and
development by people working in different institutions with a focus on bioinformatics.
Although the number of regular contributors is probably smaller than the number of
contributors to bioconda, it is growing and the community is actively inviting
contributions and mentors newcomers, e.g. through Outreachy, GSoC, or internships
at participating institutes.  We are hopeful that the benefits provided by Guix will
encourage more people in bioinformatics and other computationally intensive fields to
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adopt this approach.
The pipelines themselves are already being used for many collaborations within the
Max Delbrueck Center. To broaden our user-base, our group also conducts regular
training sessions for scientists who lack familiarity with computational bioinformatics at
this institute and beyond. We encourage users of PiGx to contribute to the pipelines
and share their experiences with us; to that end we have set up public source code
repositories, a web site, and a public mailing list.

Additional Information:

Question Response

Are you submitting this manuscript to a
special series or article collection?

No

Experimental design and statistics

Full details of the experimental design and
statistical methods used should be given
in the Methods section, as detailed in our
Minimum Standards Reporting Checklist.
Information essential to interpreting the
data presented should be made available
in the figure legends.

Have you included all the information
requested in your manuscript?

Yes

Resources

A description of all resources used,
including antibodies, cell lines, animals
and software tools, with enough
information to allow them to be uniquely
identified, should be included in the
Methods section. Authors are strongly
encouraged to cite Research Resource
Identifiers (RRIDs) for antibodies, model
organisms and tools, where possible.

Have you included the information
requested as detailed in our Minimum
Standards Reporting Checklist?

Yes

Availability of data and materials

All datasets and code on which the
conclusions of the paper rely must be
either included in your submission or
deposited in publicly available repositories

Yes

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://scicrunch.org/resources
https://scicrunch.org/resources
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/editorial_policies_and_reporting_standards#Availability


(where available and ethically
appropriate), referencing such data using
a unique identifier in the references and in
the “Availability of Data and Materials”
section of your manuscript.

Have you have met the above
requirement as detailed in our Minimum
Standards Reporting Checklist?

Powered by Editorial Manager® and ProduXion Manager® from Aries Systems Corporation

https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist
https://academic.oup.com/gigascience/pages/Minimum_Standards_of_Reporting_Checklist


 

Reproducible genomics analysis 
pipelines with GNU Guix 
 
 
Ricardo Wurmus1*, Bora Uyar1*, Brendan Osberg1*, Vedran Franke1*, Alexander Gosdschan1*, 
Katarzyna Wreczycka1, Jonathan Ronen1, Altuna Akalin1# 

 
1The Bioinformatics Platform, The Berlin Institute for Medical Systems Biology, Max-Delbrück Center for 
Molecular Medicine, Robert-Rössle-Strasse 10, 13125 Berlin, Germany 
* Equal contributions  
# Corresponding author (e-mail: altuna.akalin@mdc-berlin.de) 
 
Keywords: Pipelines in genomics, reproducible software, functional package management, 
RNA-seq, single cell RNA-seq, ChIP-seq, Bisulfite-seq, differential expression, differential 
binding, differential methylation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Manuscript Click here to access/download;Manuscript;Reproducible
genomics pipelines with GNU Guix (6).pdf

Click here to view linked References
 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

http://www.editorialmanager.com/giga/download.aspx?id=46682&guid=f4ca3ada-1a20-481c-aff8-2cc3e2466385&scheme=1
http://www.editorialmanager.com/giga/download.aspx?id=46682&guid=f4ca3ada-1a20-481c-aff8-2cc3e2466385&scheme=1
http://www.editorialmanager.com/giga/viewRCResults.aspx?pdf=1&docID=2074&rev=1&fileID=46682&msid=023cad31-1656-49f1-99a5-3fe618cfc671


 

Abstract 
In bioinformatics, as well as other computationally-intensive research fields, there is a need for 
workflows that can reliably produce consistent output, from known sources, independent of the 
software environment or configuration settings of the machine on which they are executed. 
Indeed, this is essential for controlled comparison between different observations or for the 
wider dissemination of workflows. Providing this type of reproducibility and traceability, however, 
is often complicated by the need to accommodate the myriad dependencies included in a larger 
body of software, each of which generally come in various versions. Moreover, in many fields 
(bioinformatics being a prime example), these versions are subject to continual change due to 
rapidly evolving technologies, further complicating problems related to reproducibility. Here, we 
propose a principled approach for building analysis pipelines and managing their dependencies. 
As a case study to demonstrate the utility of our approach, we present a set of highly 
reproducible pipelines for the analysis of RNA-seq, ChIP-seq, Bisulfite-seq, and single-cell 
RNA-seq. All pipelines process raw experimental data, and generate reports containing 
publication-ready plots and figures, with interactive report elements and standard observables. 
Users may install these highly reproducible packages and apply them to their own datasets 
without any special computational expertise beyond the use of the command line. We hope 
such a toolkit will provide immediate benefit to laboratory workers wishing to process their own 
data sets or bioinformaticians seeking to automate all, or parts of, their analyses. In the long 
term, we hope our approach to reproducibility will serve as a blueprint for reproducible 
workflows in other areas. Our pipelines, along with their corresponding documentation and 
sample reports, are available at http://bioinformatics.mdc-berlin.de/pigx  
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Introduction 
Reproducibility of scientific workflows is a ubiquitous problem in science, and is particularly 
problematic in areas that depend heavily on computation and data analysis (see (Peng 2011)). 
For such work it is essential that installed software is identical to versions used in publication, 
and directly traceable to a well-defined set of source packages in order to facilitate the 
reproduction of published data and the controlled manipulation of these software systems. 
Unfortunately, this goal is often unattainable for a variety of related reasons: Research-oriented 
software may be hard to build and install due to unsatisfiable dependency constraints; non-trivial 
software may yield different results when built or used with different versions or variants of 
declared dependencies; on workstations and shared High Performance Computing (HPC) 
systems alike, it may be undesirable or even impossible to comply with version and variant 
requirements due to software deployment limitations. Moreover, It is unrealistic to expect users 
to manually recreate environments that match the system and binary substrate on which the 
software was developed. In the field of bioinformatics the above problem is exacerbated by the 
fact that data production technology moves extremely fast; existing software and data analysis 
workflows require frequent updates. Thus, it is paramount that multiple versions and variants of 
the same software can be automatically built, in order to ensure reproducibility of projects that 
are either in-progress, or are already published. Moreover, bioinformatics workflows are 
increasingly being applied to potentially sensitive medical data from research participants. For 
the sake of data security, then, it is important that researchers know exactly what sources are 
being used in an application in order to minimize the risk of code that might (either maliciously 
or inadvertently) compromise confidentiality (Shu 2017). Thus, bioinformatics represents a field 
where there is a need for both reproducibility, and referential transparency (i.e. traceability to 
original software sources). 
 
An important related issue is the reproducibility of workflows and pipelines across different 
machines. In addition to bioinformatics, many scientific fields require the researcher to prototype 
their code on local workstations with a custom software stack, and then later run it on shared 
HPC clusters for large data sets. The researcher must then be able to recreate their local 
environment on the cluster to ensure identical behavior. All of these concerns add to the burden 
on scientists, and valuable time that could be spent on research is wasted accommodating the 
limitations of system administration practices to ensure reproducibility. Even worse, 
reproducibility failures can be overlooked amid this complication, and publications could be 
accompanied with irreproducible analysis workflows or software. For these reasons, the 
scientific community in general -and fast evolving fields like bioinformatics in particular- need 
reliable and reproducible software package management systems. 
 
In recent years, several tools have gained popularity among software developers and system 
administrators for wrapping Linux kernel features to accomplish process isolation, bind mounts, 
and user namespaces, or to deploy services in isolated environments (also called “containers”). 
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Examples of such tools include: Docker, Singularity, and lxc. These tools are sometimes also 
proposed as solutions to the reproducibility problem (Peng 2011; Boettiger 2015), because they 
provide a way to ship an application alongside all of its runtime dependencies. This approach 
necessitates the use of file system images that are modified using imperative statements, e.g. to 
run a package manager inside a namespace, with the goal of embedding all dependencies in an 
opaque binary image. 
 
Such images, however, offer no indication as to the sources from which their contents originate. 
Although contributors following best practices will generally declare their dependencies, with 
many contributors, and inevitable human error, it can often become difficult to confidently 
ascertain the full contents of an opaque binary bundle. Software deployment inside of the 
container is still subject to the well-known limitations of traditional package managers, such as 
intractable stateful behavior, time-dependent installation results, the inability to install and 
control more than a handful of application- or library- variants of packages on the same system, 
to name a few. Some of these limitations can partially be worked around by following strict 
policies such as operating version-controlled mirrors of all upstream package repositories. 
However, these policies are not enforced by container systems like Docker. Rather, they only 
shift the problem of reproducibility from the package level to the level of binary disk images, a 
rather less useful level of abstraction.  
Functional package management (Dolstra, 2004), on the other hand, embeds the complete 
dependency graph and configuration space into the construction of the package itself. This 
approach allows for referential transparency in addition to bit-for-bit build reproducibility. Other 
package and environment managers (such as Conda, EasyBuild, or Spack) leave out this 
information to varying degrees, and rely on tacit assumptions about the deployment- and build- 
environments. 
 
For the above reasons, we propose functional package management as implemented in GNU 
Guix (Courtès, 2015) as a way to implement workflow systems. To demonstrate the feasibility of 
this approach, we created a set of analysis tools (or 'pipelines') for common genomics analysis 
data sets: RNA-seq, ChIP-seq, BS-seq and scRNA-seq (for the sequencing of RNA, Chromatin 
Immunoprecipitation, Bisulfite-treated DNA, and single-cell resolution RNA, respectively). Each 
pipeline has a complex and large graph of dependencies, and each graph is comprehensively 
declared as a GNU Guix package definition; the graph is then built reproducibly by relying on 
Guix package manager features. Note that these pipelines also represent production-level 
pipeline tools, rather than simply model examples -they come with a full set of features including 
alignment, quality checking control, quantification, assay specific analysis and HTML reports. 
This set of pipelines is referred to, collectively, with the acronym PiGx (for Pipelines in 
Genomics ) --pronounced “pigs”. 1

1 The trailing x serves primarily as an aid to search-specificity, and denotes implementation 
using Guix) 
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Results 

Pipeline design and implementation philosophy 
PiGx was designed with special focus on several key features: namely, that they be 1) easy to 
use, 2) easy to install, 3) easy to distribute, 4) reproducible and 5) referentially transparent, 
many of which are inter-related constraints. Care was taken to ensure that all of the pipelines 
have a similar interface, so that familiarity with one pipeline would make for a gentler learning 
curve in using the others. For the end-user, each pipeline has the same input types: a sample 
sheet and a settings file. The sample sheet contains information about samples (such as 
names, labels, covariates etc.) The settings file contains extra arguments related to the 
execution of the pipelines. The users can generally run pipelines as follows:  
  pigx [pipeline_name] [sample_sheet] -s [settings_file] 

where [pipeline_name] can refer to any of the four pipelines: “rnaseq”, “chipseq”, “bsseq”, or 
“scrnaseq”. The resulting output provided to the users includes high quality reports and figures 
containing a standard set of results from basic analyses and data quality checks. Where 
appropriate, reports also contain certain interactive elements.  
 
In implementing this toolset, one of our first design choices was to use a conventional build 
system, the GNU Autotools suite, to configure and build the pipelines as if they were first-class 
software packages in their own right rather than a mere collection of tools and “glue code”. 
Instead of assuming that a user will provide a suitable environment at runtime, the use of a build 
system allows us to capture the software environment at configuration time. This is achieved by 
explicitly checking for the presence of required tools in the build environment and recording their 
exact location in the pipeline's configuration file. At runtime, the pipeline refers only to tools 
through the configuration file and does not assume the availability of dependent software in the 
global environment. Moreover, using a well-established build system makes it easy to package 
the pipelines for any package manager. We chose GNU Autotools over other build systems for 
two reasons: it does not require users to have a copy of the build system software as it compiles 
to shell code (which is highly portable), and it has been established long enough to implement a 
conventional and flexible build interface with well-known behavior even in somewhat unusual 
circumstances, such as the installation of files into unique prefixes as is done when building with 
GNU Guix. 
 
Capturing the build-time environment alone is not enough to ensure reproducibility, nor is the 
use of a build system sufficient to make installation easy. Thus, our second design choice was 
to package the pipelines for the GNU Guix package manager. Like other user-level package 
managers such as Conda or EasyBuild, GNU Guix allows users to install, upgrade and remove 
software without having to know the details of dependencies or the build procedure. Unlike 
traditional package managers, however, GNU Guix takes a declarative approach to software 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

environments called functional package management. This approach takes into account the 
complete graph of dependencies and build-time configurations, and maximizes build 
reproducibility by building binaries in isolated environments. Packages are installed into 
directories with unique prefixes that are computed from the dependency graph, allowing for the 
simultaneous installation of different versions or variants of applications and libraries. With 
functional package management, a given software build will generally yield bit-identical files 
when the build is performed on different machines or on the same machine at different points in 
time, independent of the current state of the system (caveats to this generalization are 
discussed below). 
 
We consider software reproducibility an important asset in controlled experimentation. 
Reproducing a software environment bit for bit is not a goal in itself, but it provides us with a 
foundation upon which we can perform precise changes to the environment and assess the 
impact of these changes. Without bit-for-bit reproducibility we cannot be certain of the nature 
and impact of differences in the software environment. While virtual machines or binary 
application bundles such as Docker images would be sufficient to freeze the state of our 
software environment, relying on these tools would forgo the ability to recreate that same 
environment from scratch; nor would it be possible to analyze the environment at the level of 
software packages. The approach of functional package management as implemented in GNU 
Guix preserves the relationships between software packages and ensures that differences to 
the environment can be accounted for. 
 
A further design choice remained regarding the workflow management system, which would 
execute a series of tasks mostly in the form of scripts from different programming languages. 
For this purpose, we used SnakeMake (Köster and Rahmann 2012), which provides 
target-driven execution infrastructure similar to GNU Make but with Python syntax, along with 
useful features such as parallel execution on HPC scheduling systems. We would like to 
emphasize, however, that this choice of workflow management system was made purely to 
facilitate ease of development and acceptance within the bioinformatics community, where the 
Python programming language is well-established. The different pipeline stages are 
implemented with a workflow management system stitching together various bioinformatics 
tools; they are made configurable with the GNU Autotools and packaged with GNU Guix. This 
means they will be almost fully (see below) build-reproducible and can be installed via the 
one-liner: 
guix package --install pigx . 
 
 

RNA-seq pipeline 

General Description of PiGx-RNA-seq Pipeline 
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PiGx RNA-seq provides an end-to-end preprocessing and analysis pipeline for RNA-seq 
experiments. The pipeline takes a set of raw fastq read files and the experimental design as 
described by the user, and produces differential expression reports with figures and tables of 
differentially expressed genes, as well as gene ontology (GO) term analysis thereof. 
Furthermore, it provides quality control reports about the experiment. To use the pipeline, the 
user must provide two files: the sample sheet describing the samples and corresponding fastq 
files, and a settings file with configuration parameters related to the pipeline’s execution. The 
settings file lists, among other things, the location of a reference genome for alignment, a GTF 
file with genome annotations, and a transcriptome reference, as well as a list of desired 
differential expression analyses to be performed, specifying which samples to use as cases and 
controls --see package documentation here 
http://bioinformatics.mdc-berlin.de/pigx_docs/pigx-rna-seq.html for more details. 
 
The pipeline can then be run with the command  
  pigx rnaseq [sample_sheet] -s [settings_file] , to generate the output 
through several intermediate steps (see figure 1). 
 
PiGx RNA-seq uses the reference genome and transcriptome provided by the user to produce 
indices using STAR (Dobin et al. 2013) and Salmon (Patro et al. 2017) respectively. It then uses 
Trim Galore! (Babraham 2018b) to trim low quality reads and remove adapter sequences before 
aligning the reads to the reference using STAR. At this point, PiGx RNA-seq uses fastqc 
(Babraham 2018a) and MultiQC (Ewels et al. 2016) to generate comprehensive quality control 
reports of the sequencing, trimming, and alignment steps. PiGx RNA-seq also uses BEDTools 
(Quinlan and Hall 2010) to compute the depth of coverage in the experiment and outputs 
convenient bedgraph files. Gene expression quantification is obtained from STAR, and 
transcript level quantification using Salmon. The gene expression count matrix is then used to 
run differential expression analyses as specified by the user, using DESeq2 (Love, Huber, and 
Anders 2014) for statistical analysis and g:ProfileR (Reimand et al. 2007) for GO term analysis. 
Each differential expression analysis produces a self-contained HTML report. 
 
The differential expression reports produced are comprehensive, including sortable tables for 
differentially expressed genes for a detailed view, principal component analysis plots for a 
birds-eye view of the experiment, as well as MA and volcano plots. In addition, the reports 
include a section with GO term enrichment analysis. 
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Figure 1 
Workflow diagram of the PiGx-RNA-seq pipeline. 
 
 

RNA-seq Use Case 
The study by Hon et al. (2014) is motivated by several observations: DNA methyl-transferases 
(DNMTs) are the major mediators of cytosine methylation (producing 5-methyl-cytosine). 5hmC 
(5-hydroxy-methyl-cytosine) is a product of oxidation of 5mC's, and the TET family of proteins 
mediate 5mC oxidation. It has been established that DNA demethylation consists of the 
sequence of chemical reactions that convert 5mC into 5hmC, which is subsequently converted 
into 5fC (5-formyl-cytosine) and 5caC (5-carboxyl-cytosine). Active enhancers are depleted for 
5mC but are enriched for 5hmC marks (Rampal et al. 2014), suggesting that an interplay 
between DNMTs and TET proteins could determine the activity level of enhancers. Mutating 
DNMTs or TET proteins in mouse embryonic stem cells (mESCs) perturbs global DNA 
methylation status, however cells do not lose the ability to regenerate. Moreover, mutating TET 
proteins and perturbing the oxidation levels have previously been shown to skew the 
differentiation of mESCs. Based on these facts, the authors address the following question: Can 
the skewed differentiation in mESCs be explained by deregulated balance of 5mC / 5hmC levels 
at active enhancers following the loss of activity of TET proteins?  
 
The authors of the above study use TAB-Seq, Bisulfite-Seq, ChIP-seq and RNA-seq methods to 
profile genome-wide methylation, demethylation, histone modifications and gene expression 
levels to address these questions. They find that Tet2 has the biggest role in enhancer 
demethylation in mESCs. Deletion of Tet2 leads to enhancer hypermethylation, which in turn 
reduces enhancer activity. The reduced enhancer activity leads to a disruption in the activation 
of more than 300 genes in the early stages of differentiation, however the activity levels of these 
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genes are restored to wild-type levels at the later stages of differentiation. Reduced enhancer 
activity followed by delayed gene activation explains the skew observed in mESC differentiation. 
 
The authors of the above study profile the transcriptomes of mESCs as they differentiate into 
neural progenitor cells (NPCs) within a six day period. They quantify gene expression levels of 
wild-type, Tet1 -/- and Tet2 -/- cells on day zero, day three, and day six and sequenced two 
biological replicates per sample. Thus, they obtained 18 samples in total (3 genotypes x 2 
replicates x 3 days). In figure 5 of the original manuscript, the authors summarise the results of 
the RNA-seq analysis. Here, we use the PiGx-RNA-seq pipeline to pre-process the raw fastq 
files downloaded from the GEO archive (GEO accession: GSE48519), map the reads to the 
Mus musculus genome (GRCM38 (mm10) build), and finally quantify the expression levels of 
genes using both Salmon (Patro et al. 2017) and STAR (Dobin et al. 2013). We then use 
DESeq2 (Love, Huber, and Anders 2014) to perform multiple differential expression analyses as 
described in the original publication. Based on the processed and normalized count tables and 
differential expression analysis results produced by the PiGx pipeline, we have written a small 
custom script to reproduce the panels in figure 5 of Hon et al. In order to reproduce this figure, 
we needed to perform seven differential expression analyses as described in Table 1. HTML 
reports for each differential expression analysis (based on read counts computing using STAR) 
can be found here: http://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html.  
 

Analysis Case Sample Control Sample Description 

tet2_diff_day3 day3_tet2_KO day0_tet2_KO 
Tet2 -/- cells on day 3 are 
compared to Tet2 -/- cells on day 
0. 

tet2_diff_day6 day6_tet2_KO day0_tet2_KO 
Tet2 -/- cells on day 6 are 
compared to Tet2 -/- cells on day 
0. 

WT_diff_day3 day3_WT day0_WT 
Wild-type cells on day 3 are 
compared to wild-type cells on 
day 0.  

WT_diff_day6 day6_WT day0_WT 
Wild-type cells on day 6 are 
compared to wild-type cells on 
day 0.  

tet2_vs_WT_day0 day0_tet2_KO day0_WT 
Tet2 -/- cells on day 0 are 
compared to wild-type cells on 
day 0.  

tet2_vs_WT_day3 day3_tet2_KO day3_WT 
Tet2 -/- cells on day 3 are 
compared to wild-type cells on 
day 3.  

tet2_vs_WT_day6 day6_tet2_KO day6_WT Tet2 -/- cells on day 6 are 
compared to wild-type cells on 
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day 6.  
 

Table 1 
Differential expression analyses performed by PiGx-RNA-seq. 
 
Having performed the above analysis, we first took a global look at how all sequenced samples 
cluster. Using a table of TPM (transcripts per million reads) counts generated by Salmon at the 
gene level, we selected the top 100 most variable genes and plotted a heatmap of all the 
samples using pheatmap package (Kolde 2018). We observed that the samples mainly cluster 
by the differentiation stage rather than genotype, which confirms the authors' findings (figure 
2A). Next, again using the same TPM counts table, we plotted the expression levels of a select 
list of genes (Nes6, Pax6, Sox1, Tet1, Tet2, Tet3, Slit3, Lmo4, Irx3) on day 0, day 3, and day 6 
(figure 2B). The changes in the expression levels of these genes perfectly match the patterns as 
described by Hon et al. At this point the authors recognise that some neural marker genes such 
as slit3 and lmo4 show discordant expression patterns between WT and Tet2 -/- samples 
particularly on day 3, which are restored back to WT levels on day 6. The authors then 
investigated whether such a delayed induction mechanism can be observed globally. It was 
shown that the percentage of genes that are differentially expressed in both Tet2 -/- and WT 
cells (compared to the undifferentiated samples of the corresponding genotypes on day 0), is 
significantly higher on day 6 than on day 3. We also observe a similar pattern, however the 
difference we observe is somewhat reduced. Our findings are reproduced based on gene 
counts quantified by both STAR and Salmon (figure 2C).  
In figure 5F of the original publication, the authors take a closer look into the list of discordantly 
induced genes on day 3 in Tet2 -/- samples. There it is shown that the majority of the genes that 
get induced in WT samples by day 3, don't get induced in the Tet2 -/- samples as highly as they 
do in the WT samples. On the other hand, these numbers are comparable on day 6. We also 
observe the same difference and reproduce the findings using both Salmon and STAR-based 
gene counts (figure 2D). This suggests that there must be a list of genes that get activated in 
WT, but lag behind in Tet2 -/- samples at the early stage of differentiation, however they catch 
up later with the WT levels. The authors call these genes ‘delayed induction genes’ and find 333 
genes that fit such a description. In figure 5G, the authors show the relative expression of these 
genes in Tet2 -/- samples compared to WT samples throughout differentiation and compare it to 
the remaining list of genes in the genome. We have successfully reproduced the same patterns 
based on 357 delayed induction genes detected by Salmon-based gene counts (282 genes 
detected by STAR-based gene counts) (Figure 2E). In figure 5H, the authors show the most 
significant GO terms enriched for the delayed induction genes. Although we don't observe the 
same set of terms as reported by the authors, we found seven development-related GO terms 
including 'tissue development' and 'nervous system development' as enriched terms (figure 2F). 
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Figure 2 
Reproduction of figure 5 from (Hon et al. 2014) using datasets processed by PiGx-RNA-seq 
pipeline. A) Hierarchically clustered heatmap of the top 100 most variable genes across all 
samples (transcripts per million (TPM) aggregated on the gene level, produced with Salmon). 
Each row represents a gene and each column represents a sequenced sample (See Table 1 for 
descriptions of the samples). The expression values are scaled by 'row'. B) Changes in the 
expression levels of a selected list of genes throughout differentiation period on day 0, day 3, 
and day 6. The y-axis shows the normalised expression levels (TPM at gene-level). The 
expression patterns of samples with Tet2 -/- background are depicted in black and wild type 
background in orange. C) Abundance of differentially expressed genes (adjusted p-value < 0.1) 
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(on y-axis) when comparing samples on day 3 or day 6 with the samples on day 0 with 
corresponding genotypes (Tet2 -/- or wild-type). The bar labeled 'overlap' represents the number 
of differentially expressed genes in both genotypes. The percentage is calculated by dividing the 
value of 'overlap' with the value of Tet2 . The results are reproduced by both Salmon-based 
gene-level read counts (top row) and STAR-based gene-level read counts (bottom row). D) 
Genes that are up-regulated (induced) in wild-type samples on day 3 (or day 6) compared to 
wild-type samples on day 0, are intersected with genes that are differentially expressed between 
wild-type samples and Tet2 -/- samples at the same stage of differentiation, and classified as 
'Tet2 > wt' (the gene is up-regulated in the Tet2 -/- sample more so than in the wild-type sample) 
or 'Tet2 < wt' (the gene is upregulated in Tet2 -/- sample less than in the wild-type sample). The 
plot is reproduced using both Salmon-based gene counts and STAR-based gene counts. E) 
Heatmaps for delayed induction genes (on the left) and 500 genes randomly selected from the 
remainder (on the right). The colors of the heatmap represent the log2 scale ratio of normalised 
expression value (gene-level TPM counts obtained using Salmon) of each delayed induction 
gene between Tet2 -/- sample and the wild-type sample of the corresponding replicates (r1: 
replicate-1, r2: replicate-2) on the corresponding stages of differentiation (day 0, day 3, and day 
6). The rows of the heatmap are ordered in increasing order based on the average values of the 
two replicates on day 3. The color scales range between -1 and 1 before reaching saturation. F) 
Top GO terms for biological processes (on the y-axis) enriched among the delayed induction 
genes. The GO terms are detected using g:ProfileR tool (Reimand 2016). The resulting terms 
are filtered for p-value<0.05 and further filtered for the keyword 'development'. On the x-axis, the 
p-values are depicted at log10 scale. 
 
 

ChIP-seq pipeline 

General Description of PiGx-ChIP-seq Pipeline 
 
PiGx ChIP-seq is an end-to-end processing and analysis pipeline for ChIP-seq experiments. 
From the input fastq files, the pipeline produces sequencing quality control, ChIP quality control, 
peak calling, and IDR (Q. Li et al. 2011) estimation. PiGx ChIP-seq also prepares the data for 
visualization in a genome browser. The pipeline execution is highly customizable - the user can 
specify which parts of the pipeline to execute, and which parameter settings to use. As in the 
other pipelines, to use PiGx ChIP-seq, the user must provide two files: a sample sheet 
containing the names of the fastq files with a descriptive label, and a settings file. The settings 
file contains the locations of the reference genome, and the GTF file with genome annotations, 
as well as a list of configurations for each executable step. Upon completion, the user is 
provided with quality reports, and all of the pre-processed data, which substantially facilitates 
downstream analysis and visualization. 
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The pipeline can then be run with the command: 
  pigx chipseq [sample_sheet] -s [settings_file] 
 
PiGx ChIP-seq pipeline aligns the reads to the genome using Bowtie2 (Langmead and Salzberg 
2012), does peak calling using MACS2 (Zhang et al. 2008), calculates the irreproducibility rate 
and outputs a series of quality statistics, such as: GC content, strand cross correlation, 
distribution of reads and peaks over annotated genomic features, and clustering of samples 
based on their similarity (Landt et al. 2012). The pipeline also produces UCSC Track hubs to 
facilitate exploration of the dataset. The purpose of the pipeline is to improve the routine 
processing steps for ChIP-seq experiments and enable the user to focus on data quality control 
and biologically relevant data exploration. The pipeline heavily depends on Bioconductor (Huber 
et al. 2015) packages such as GenomicRanges (Lawrence et al. 2013) and Genomation (Akalin 
et al. 2015) for annotating peaks and summarizing ChIP-seq scores over regions of interest. 
 

 

Figure 3 
Workflow diagram for ChIP-seq pipeline 
 

ChIP-seq Use Case 
 
For consistency, we applied the ChIP-seq pipeline to data from the same study as in the section 
“RNA-seq Use Case” above (Hon et al. 2014); for the biological underpinnings of this 
experiment, please see the description provided there. Figure 4 shows part of the ChIP-seq 
quality control output performed on untreated, wild type ChIP samples, of various activating and 
repressing histone marks, and the corresponding input samples. One standard procedure is to 
validate the consistency of results with known biological priors, in order to quickly find samples 
with outlying properties, and to discover batch effects. For example, figure 4A shows the 
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expected clustering of repressive (H3k27me3, H3k9me3) and activating (H3k4me3, H3k4me1, 
H3k27ac, and H4k36ac) histone marks. Upon closer inspection, however, it becomes clear that 
the activating histone marks cluster by their corresponding batches, and not by their biological 
functionality. 
 
Figure 4B shows the cross-correlation between the signal on the plus and minus genomic 
strands, shifted by a defined range (usually within a range of 1 - 400 nucleotides). The 
maximum intensity in each row indicates the average DNA fragment size in each corresponding 
ChIP experiment. Large discrepancies in the cross correlation profile, between experiments, can 
indicate problems with fragmentation, fixation, or chromatin immunoprecipitation. The figure 
shows that most of the samples have an average fragment size between 100 - 150 bp. One of 
the H3k27me3 replicates, however, shows an aberrant fragment size profile (second sample in 
the plot). Upon visual inspection, the sample had an extremely low signal to noise ratio and the 
peak calling resulted in zero enriched regions. Such samples should either be repeated or 
omitted from the downstream analysis. 
 
Figure 4C represents the relationship between the GC content of one kilobase genomic bins 
and the ChIP signal; this plot is used as a diagnostics tool for enrichment of fragments with 
extreme nucleotide content (enrichment of fragments with GC content strongly deviating from 
the genomic mean), which can indicate problems with PCR-based fragment amplification, and 
chromatin immunoprecipitation. 
 
Figure 4D represents the distribution of reads over functional genomic features. It is used to 
observe whether the experimental results conform to known expectations, based on previous 
experiments - i.e. H3k4me3 should show strong enrichment over transcription start sites, while 
the H3k36me3 should show an enrichment over exonic and intronic regions. Deviating results 
can indicate a weak precipitation of the targeted protein, or antibody cross-reactivity with 
unexpected epitopes. Figure 4 represents just a subset of quality control metrics implemented 
as a standard output from the PiGx ChIP-seq pipeline. The full set can be found here: 
https://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html  
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Figure 4 
Example ChIP-seq quality control output. A) Clustering of samples based on correlation of 
normalized ChIP reads in one kilobase bins. B) Cross correlation between coverage profiles on 
Watson and Crick strands, shifted by the amount specified on the x axis. C) Relationship 
between read count and GC content in 1 kb bins. D) Distribution of reads in functional genomic 
features. 
 

BS-seq pipeline 

General description of the PiGx BS-seq pipeline 
 
PiGx BS-seq is a bisulfite sequencing processing pipeline used to detect genome-wide 
methylation patterns and to perform differential methylation calling for case-control settings. It 
produces individual reports for each sample provided by the user, in addition to 
differential-methylation reports for arbitrarily many pairs of treatment conditions provided by the 
user. PiGx BS-seq uses Trim Galore! (Babraham 2018b) to trim reads for adapter sequences 
and quality, and fastqc (Babraham 2018a) for quality control (both before and after trimming). If 
necessary, PiGx BS-seq produces GA- and CT- converted versions of the reference genome for 
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alignment, using bismark_genome_preparation (Krueger and Andrews 2011). Reads are then 
mapped to the reference using Bowtie2 (Langmead and Salzberg 2012), before being sorted by 
location in the genome and filtered for uniqueness using samtools (Krueger and Andrews 2011; 
H. Li et al. 2009). The corresponding reports and .bam files for each of these steps are saved to 
their respective directories.  
 
As in the other pipelines, to use PiGx BS-seq, the user must provide two input files: a sample 
sheet containing the paths to the fastq files with a descriptive label, and a settings file. The 
pipeline is robust to paired-end or single-end input data, and processing of each case is initiated 
automatically, based on whether the user supplies only a single input file, or a pair of files, for a 
given sample. The settings file contains the locations of the reference genome, among other 
directories, as well as a list of configuration steps for each executable step. The pipeline can 
then be run with the command:  
  pigx bsseq [sample_sheet] -s [settings_file] 
 
Post-mapping analysis steps performed automatically by PiGx BS-seq include tabulation of the 
fractional methylation of CpG sites, the segmentation of genomic methylation patterns across 
the genome, and the selection of differentially methylated sites between pairs of treatments 
provided in the settings file above. Furthermore, the final reports include genomic annotation of 
differentially methylated regions and methylome segments. A single execution of the pipeline 
can perform differential methylation analysis between a sample and arbitrarily many references; 
each comparison will have its own dedicated report, in addition to the final report for the sample 
itself. For traceability, direct links to input files, and various execution tools are saved directly 
within the output folder. Finally, a copy of the full methylome for each sample is also saved in 
BigWig (.bw) format, compatible with visualization in an online genome browser. 

 

Figure 5 
Workflow diagram for PiGX BS-seq pipeline 
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BS-seq Use Case 
We applied the BS-seq pipeline to data from embryonic stem cells in mice, comparing wild type 
and Tet2 deletion experiments (accessions SRX317877, and SRX317883 respectively). These 
data sets derive from the same study as was used for controlled comparison in the section 
“RNA-seq Use Case” above (Hon et al. 2014); for a biological description of this experiment, 
please refer to that section. HTML reports for each of the performed analyses can be found 
here: https://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html 
 
Figure 6 shows a standard set of data analysis metrics generated automatically by the pipeline. 
For example, methylation levels near the promoter region of a list of annotated genes for each 
sample are shown in figures (A) and (B). For generality, figure 6 averages over all known genes, 
however the user may freely probe for more specific results by supplying any arbitrary set of 
genes under investigation (in the absence of such an annotation file, this figure is simply omitted 
from the final report). A coarse map of the genome is provided in (C), which, for some datasets, 
may serve to highlight differential methylation localized to particular regions or chromosomes. In 
this particular use-case it is more useful as a null control showing that these regions are 
uniformly distributed throughout the genome. In addition, a histogram for differential methylation 
status of CpGs throughout the genome is provided in (D) using the same colour-code as in (C). 
The methylation differences of hyper-methylated, hypo-methylated and non-differentially 
methylated CpGs are shown as histograms with the color-code as in Figure 6C. The latter is 
shown as a distribution of methylation differences deemed to be not statistically significant (in 
black), and since these are generally far more numerous than the former, the two curves are 
normalized independently. Note also that since these curves represent relative distributions, the 
vertical axis is of arbitrary units and tick marks are omitted. Finally, a screenshot of 
data-visualization from the genome browser (Robinson et al. 2011; Thorvaldsdóttir, Robinson, 
and Mesirov 2013) is provided in (E); here, regions of interest can be inspected manually at 
arbitrary precision. 
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Figure 6 
Output from the PiGx BS-seq pipeline. (A,B): average CpG methylation throughout the promoter 
regions of the mm10 genome for Tet2 -/- and WT, respectively, as a function of distance from 
TSS (in direction of transcription). C) Whole-genome map of differentially methylated CpGs, with 
colour-code to indicate hyper- and hypo- methylation of the treatment (Tet2 -/-) relative to the 
control (Wild-type). D) Histogram of the difference in average CpG methylation between Tet2 -/- 
and wild-type. For differentially-methylated cytosines, colors are consistent with (C), while CpGs 
with statistically insignificant difference in methylation are provided in black. Normalization of 
these two curves is performed independently (since the latter are generally far more numerous 
than the former), and the graph conveys only relative proportions (thus, as the absolute y-axis is 
of arbitrary scale, units are omitted). E) Screenshot of the genome browser using bigwig data 
from PiGx; here the data can be examined in much finer detail than in C). 
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scRNA-seq pipeline 

General description of the PiGx scRNA-seq pipeline 
Single cell RNA-seq is an extremely powerful technology, that is becoming increasingly 
prevalent in biological studies. The rapid development of UMI based methods, along with 
droplet based cell separation (Macosko et al. 2015; Klein et al. 2015), has enabled even simple 
experiments to quantify expression in several tens of thousand of cells. PiGx scRNA-seq is a 
pipeline for pre-processing of UMI based single-cell experiments. The purpose of the pipeline is 
to enable seamless integration and quality control of multiple single cell data sets. The pipeline 
works with minimal user input. As in the other pipelines, the user must provide a sample sheet 
with a basic experimental description, and a settings file which defines, among other 
parameters, the location of the input data and reference sequence and annotation. The pipeline 
can then be run with the command:  
 
  pigx scrnaseq [sample_sheet] -s [settings_file]  
 
The pipeline does preliminary read processing, maps the reads with the STAR (Dobin et al. 
2013) aligner, and assigns reads to gene models. It also separates cells from background 
barcodes (Alles et al. 2017), and constructs digital expression matrices for each sample (each 
saved in loom format); loom files from all samples are then merged into one large loom file using 
the loompy package (Linnarsson 2018). The expression data are subsequently processed into a 
SingleCellExperiment (Aaron Lun and Risso 2018) object. SingleCellExperiment is a 
Bioconductor class for storing expression values, along with the cell, and gene data, and 
experimental meta data in a single container. It is constructed on top of hdf5 file based arrays 
(Pagès 2018), which enables exploration even on systems with limited RAM (random access 
memory).  
During the object construction, the pipeline performs expression normalization, dimensionality 
reduction, and identification of significantly variable genes. The pipeline then classifies cells by 
cell cycle phase and calculates the quality statistics. The SingleCellExperiment object contains 
all of the necessary data needed for further exploration. The object connects the PiGx pipeline 
with the Bioconductor single cell computing environment, and enables integration with state of 
the art statistical, and machine learning methods (scran (A. T. L. Lun, McCarthy, and Marioni 
2016), zinbwave (Risso et al. 2018), netSmooth (Ronen and Akalin 2018), iSEE (Aaran Lun et 
al. 2018), etc.). 
The pipeline produces an HTML report containing quality controls, labeled by input covariates, 
which can be used for detecting batch effects. 
 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

https://paperpile.com/c/gIJdYe/sV5g+6GOr
https://paperpile.com/c/gIJdYe/jrAH
https://paperpile.com/c/gIJdYe/jrAH
https://paperpile.com/c/gIJdYe/1N9R
https://paperpile.com/c/gIJdYe/w7ab
https://paperpile.com/c/gIJdYe/ZMgI
https://paperpile.com/c/gIJdYe/W4jk
https://paperpile.com/c/gIJdYe/FEAs
https://paperpile.com/c/gIJdYe/FEAs
https://paperpile.com/c/gIJdYe/Nnrf
https://paperpile.com/c/gIJdYe/pvL4
https://paperpile.com/c/gIJdYe/CvFW
https://paperpile.com/c/gIJdYe/CvFW


 

 

Figure 7  
Workflow diagram for PiGx-scRNA-seq pipeline. 
 

scRNA-seq Use Case 
 
To showcase the capabilities of PiGx scRNA-seq, we ran the pipeline on isolated single nuclei 
from the mouse brain (Hu et al. 2017). In this study, the authors developed a gradient-based 
method for nucleus separation, and used it in combination with Drop-seq to profile the 
transcriptomes of more than 18,000 single nuclei. Figure 8 shows a part of the quality control 
output from the PiGx scRNA-seq pipeline. Figure 8A shows the per sample number of total and 
uniquely mapped reads. Figure 8B visualizes the cells on the first two principal components. 
The color gradient corresponds to the number of detected genes per cells. The figure shows 
that the total number of detected genes strongly correlates with the first two principal 
components. Figure 8C is analogous to figure 7B of the original publication, with the color 
scheme representing labeling each cell with its respective stage of the cell-cycle. Thus, figure 
8C shows that the first two principal components correlate with the stage of the cell cycle. The 
heatmap in figure 8D shows scaled normalized expression values for genes that contribute the 
most to the first principle component. High read-count variability in a small number of genes 
drives the variation around the first principle component. The column-wise annotations show 
that the variation is driven mainly by cells in the G1 phase of the cell-cycle from the second 
biological replicate. The HTML report for this analysis can be accessed here: 
http://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html  
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Figure 8 
Sample output from the PiGx scRNA-seq pipeline. A) Abundance of total uniquely mapping 
UMIs per sample. B) Visualization of cells on the first and second principal component 
calculated from the normalized expression values. The gradient shows the total number of UMIs 
per cell. C) Same data representation as in B, but colored based on the cell cycle assignment. 
Cell cycle was assigned using the cyclone function from the scran Bioconductor package (A. T. 
L. Lun, McCarthy, and Marioni 2016). D) Expression heatmap of genes contributing most to the 
first principle component. Genes are ordered in rows, while cell are in columns. Color bars 
above the heatmap show relevant experimental variables. 
 

Reproducibility metrics of the pipelines in different 
systems 
We define the complete software environment needed for each of the pipelines using Guix 
package definitions. These package specifications not only outline the immediate dependencies 
of the pipelines, but extend to the full software stack recursively. The dependency graph is 
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rooted in a handful of bootstrap binaries. Apart from these binary roots, every application or 
library in the graph is built from source. Guix ensures that packages are built in an isolated 
environment in which nothing but the specified dependencies are available. This is a 
precondition for bit-reproducible builds, i.e. repeatable package builds that yield the very same 
binary output for the same set of inputs. Under ideal circumstances (see below), a Guix 
specification for the complete dependency graph and the set of all source code would be 
sufficient to exactly reproduce the very same binaries of the pipelines presented in this paper. 
 
Unfortunately, there are additional obstacles to bit-reproducibility that cannot be avoided purely 
by the functional package management model. Examples for sources of irreproducibility in build 
artefacts include embedded timestamps, non-deterministic sorting of strings, non-deterministic 
compiler output, and the like. While some of these obstacles can be removed by deliberate 
patching of compilers or applications, others are harder to diagnose and can thus lead to failure 
to reproduce the same arrangement of bits in independent builds, be that on the same machine 
at different points in time or on different systems. In the reports produced by our pipelines we 
can eliminate differences due to timestamps by controlling them with the 
SOURCE_DATE_EPOCH environment variable. This option can be invoked, in order to 
produce identical HTML reports, provided there are no tools that introduce non-determinism (as 
is the case for the PiGx BS-seq pipeline). 
 
To estimate the level of bit reproducibility in our pipelines, we checked out version 
v0.14.0-3597-g17967d1 of GNU Guix, repeatedly built the pipeline packages pigx-rnaseq , 
pigx-bsseq , pigx-chipseq , pigx-scrnaseq  and their direct dependencies on three 
different systems (an office workstation, a virtual machine, and a build farm consisting of 20 
heterogeneous build nodes), and recorded the hashes of the package trees that were produced. 
Whenever the hashes of any two builds differed, we looked at the exact differences with 
diffoscope (https://diffoscope.org/). Upon closer inspection we identified a number of common 
issues in non-deterministic builds, such as timestamps embedded in compiled binaries and text 
files, or randomized file names in files generated by test suites. 
 
Python dependencies are of particular note here, because they are generally not reproducible 
due to the fact that the byte compiler records the timestamp of the source file in the compiled 
binary. This means that all compiled Python files will differ when they are compiled at different 
points in time. (This problem will be addressed in the upcoming Python 3.7, which will 
implement PEP 552 for deterministic compilation.) To avoid this problem and increase the 
number of packages that could be made reproducible, we patched our variant of Python 3.6 
such that it resets the embedded timestamp in compiled files to the Unix epoch. This allowed us 
to greatly increase the number of fully bit-reproducible packages. As can be seen in Table 2, 
only a total of 8 out of 355 packages (or only about 2.2%) were not bit-reproducible for as-yet 
unknown reasons. 
 
Figure 9 shows the degree of bit-reproducibility for the direct dependencies of each of the 
individual pipeline packages. Dependent packages whose files differed compared to builds on 
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other systems fell either in the category of “minor problems” or “not reproducible”, dependent on 
the source and magnitude of non-determinism. The exact dependency counts for each category 
and pipeline package are listed in Table 2. A comprehensive list of all dependent packages that 
were categorized as having “minor problems” is contained in Table 3. This table shows that the 
reproducibility problems of these packages are of negligible magnitude and could be corrected 
with minor patches to the package definitions in Guix. 
 

 

Figure 9 
Percentage of directly-dependent packages building in a bit-reproducible fashion across 
different systems for each of the pipelines. 
 
 

Package Not reproducible Minor problems Reproducible 

pigx-bsseq 2 2 167 

pigx-chipseq 7 9 236 

pigx-rnaseq 7 9 211 

pigx-scrnaseq 6 8 218 
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All pipelines 8 9 338 

 

Table 2 
Number of dependent packages and their reproducibility status. See Table 3 for more details 
about packages with minor problems. 
 
 

Package Magnitude Notes 

r-minimal 2 bytes non-deterministic line break 

python ~ 6% timestamp byte in header of 
bytecode files 

python-matplotlib ~ 1.7% single file difference 

python-pycparser ~ 3% single file with timestamp 

python-cffi ~ 1.8% recorded random test file names 

python-numpy < 0.5% six bytecode files differ 

python-simplejson 2 bytes two files have single byte 
differences 

gtk+ < 1% single file (icon cache) 

glib < 0.1% single file difference 

 

Table 3 
Table of packages with minor reproducibility problems and the magnitude of irreproducible files. 
 

Alternative ways to install the pipelines: 
We generated application bundles containing all pipelines for use with Docker or Singularity. 
These container images were generated by exporting the "closure" (i.e. the package and all 
packages it references, recursively) of the pigx  package (a package containing the individual 
pipeline packages pigx-bsseq , pigx-chipseq , pigx-rnaseq , and pigx-scrnaseq ) 
from the declarative Guix package definition instead of iteratively modifying a base image 
containing a GNU+Linux operating system in a series of imperative steps. The container images 
are merely a translation of a functional description of the desired environment; as such, it is 
independent of global state, such as the contents of third-party package repositories or build 
time. The Docker image can be obtained at https://hub.docker.com/r/bimsbbioinfo/pigx/; the 
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Singularity image can be downloaded from 
https://bioinformatics.mdc-berlin.de/pigx/supplementary-materials.html. We used Guix at commit 
5149aeb7e62cf62398b55be38469cd28c25d8d7d (version v0.14.0-7054-g5149aeb7e) to 
generate these container images.  This is the same version that we used to install the variant of 
PiGx with which the plots and reports in this publication were generated. 
Since the pipelines use the well-known GNU build system as implemented by the Autotools 
suite, the pipelines can be configured and built in any environment providing the required 
dependencies. The portable configure script detects and records references to necessary 
software in the environment and reuses them at runtime using their absolute file names. Any 
package manager (such as Conda) can be used to fashion such a build-time environment. With 
regards to reproducibility, however, we recommend that a package manager be used that can 
provide separate, immutable, and uniquely prefixed environments to ensure that references to 
tools that are recorded at configuration time are identical to the variants that are used at 
runtime. 

Discussion  
Computational workflows are becoming an indispensable part of the biological sciences as the 
field becomes more data intensive. The diversity and amount of data requires many tools for 
analysis.  
Consequently, published software or workflows often come with a complex set of dependencies. 
Even if sensible guidelines (e.g. “Software with Impact” 2014), such as sharing code online and 
providing documentation, are employed, sometimes it is impossible to recreate the software 
used for analysis. Providing the code and documentation alone does not guarantee 
reproducibility or usability, nor do Docker containers completely remedy this problem.  
In addition to reproducibility, there is also an increasing need for traceability and transparency, 
for the purposes of comprehensive data security in applications that manage the sensitive data 
collected in biomedical studies.  
 
We propose GNU Guix and principled pipeline-as-software implementation as a solution to 
reproducibility problems in complex bioinformatics workflows. Here, we demonstrated the utility 
and the reproducibility of PiGx pipelines for genomics data analysis using GNU Guix.  
 
Our decision to treat pipelines as first-class software packages and to adopt a conventional 
build system with Autotools made it possible to reduce the installation of complex software 
environments to a simple one-line command. By recording the exact locations of runtime 
dependencies of the pipeline packages during the configuration stage, we were able to 
eliminate ambiguity at runtime. When configuring the pipeline packages in an environment that 
ensures that different versions or variants of applications and libraries are stored in unique 
locations (such as an environment provided by GNU Guix), recording the exact location of 
dependencies at configuration time allows us to reproduce the detected environment at runtime. 
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We have shown that with a recursive definition of software dependencies using the framework 
provided by the functional package management paradigm as implemented in GNU Guix, it is 
possible to fully and exhaustively describe complex production-level bioinformatics software 
environments on GNU+Linux systems. The software environments were fully specified at the 
level of declarative, stateless package abstractions instead of using an imperative, stateful 
approach. We have also shown that the principled declarative approach to the management of 
software environments facilitates bit-reproducibility. The higher-level definitions of software 
environments can be translated in an automated fashion to lower-level application bundles such 
as Docker images. In contrast with container systems like Docker or Singularity, Guix encloses 
the complete software environment and enables users to transparently rebuild it reproducibly 
from source without having to trust a binary application bundle. Due to referential transparency, 
binaries in Guix can only be the result of their corresponding sources.  
 
Functional package management as implemented by GNU Guix significantly reduces the 
complexity of, and lowers the barrier to, managing bit-reproducible software environments. 
Users are freed from menial bookkeeping tasks such as keeping track of the origin of package 
binaries, the time of installation, the order of installation instructions, the state of the operating 
system at the time of installation, or any other runtime state. As far as users are concerned, it is 
enough to know the names of the packages that should be installed (in our case, simply “pigx ”) 
and the current version of Guix; everything else such as source code provenance tracking, 
dependency management, package configuration, and compilation in isolated environments is 
handled by Guix. The guarantees provided by Guix enable users to analyze obstacles to 
experimental reproducibility beyond the software environment, such as sources of 
non-determinism at runtime. 
 
In our attempts to analyze the degree of repeatability of the HTML reports produced by PiGx, 
we identified a number of such sources of non-determinism. The Salmon aligner, for example, 
has a random component and does not provide a way for users to specify a seed for the 
pseudo-random number generators. This makes it impossible to exactly repeat an analysis and 
may require patching of the Salmon source code or virtualization of the random number 
generator facilities of the host system. Other tools are sensitive to the user's locale settings and 
may generate output in non-deterministic order. We were also surprised to find that an 
increasingly large number of tools rely on a connection to the Internet, either directly or indirectly 
through dependent packages. This can be a great source of non-determinism if the 
experimental setup does not take the volatile nature of networked resources into account. 
Another important obstacle to reproducibility is the large kernel binary at runtime. Although the 
GNU C library provides a unified interface for all applications to use, the features that are 
actually implemented by the kernel at runtime may differ vastly. For example, the variant of 
Linux provided by Red Hat for their series 6 of operating systems reports its version as the 
obsolete and unsupported 2.6.32, but it contains many backported features from much newer 
kernel versions. Although this is usually not a problem, the kernel version and the implemented 
features should be taken into account. In order to make it possible to use the pipelines on Red 
Hat Enterprise Linux 6, we coordinated with other Guix developers to patch the GNU C library. 
 
The use of a declarative mechanism to managing software environments is fundamental to 
comprehensive reproducibility. This encompasses repeatable builds, bit-reproducible binaries, 
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software and data provenance, control over the configuration space, and deterministic runtime 
behavior. We have shown the feasibility of this approach in the domain of bioinformatics, and 
propose that it serve as a template for reproducible computational workflows in other areas.  
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